Homomorphisms of Lattices of Integer-Valued Continuous Functions
نویسندگان
چکیده
منابع مشابه
Integer-valued continuous functions
© Bulletin de la S. M. F., 1969, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http://smf. emath.fr/Publications/Bulletin/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impress...
متن کاملCountable composition closedness and integer-valued continuous functions in pointfree topology
For any archimedean$f$-ring $A$ with unit in whichbreak$awedge (1-a)leq 0$ for all $ain A$, the following are shown to be equivalent: 1. $A$ is isomorphic to the $l$-ring ${mathfrak Z}L$ of all integer-valued continuous functions on some frame $L$. 2. $A$ is a homomorphic image of the $l$-ring $C_{Bbb Z}(X)$ of all integer-valued continuous functions, in the usual se...
متن کاملConstruction of Homomorphisms of ^-continuous Lattices
We present a direct approach to constructing homomorphisms of A/-continuous lattices, a generalization of continuous lattices, into the unit interval, and show that an M -continuous lattice has sufficiently many homomorphisms into the unit interval to separate the points. In the past twenty years the concept of a continuous lattice and its generalizations have attracted more and more attention....
متن کاملPointfree topology version of image of real-valued continuous functions
Let $ { mathcal{R}} L$ be the ring of real-valued continuous functions on a frame $L$ as the pointfree version of $C(X)$, the ring of all real-valued continuous functions on a topological space $X$. Since $C_c(X)$ is the largest subring of $C(X)$ whose elements have countable image, this motivates us to present the pointfree version of $C_c(X).$The main aim of this paper is to present t...
متن کاملInteger-valued definable functions
We present a dichotomy, in terms of growth at infinity, of analytic functions definable in the real exponential field which take integer values at natural number inputs. Using a result concerning the density of rational points on curves definable in this structure, we show that if a function f : [0,∞) → R is such that f(N) ⊆ Z, then either sup|x̄|≤r f(x̄) grows faster than exp(r), for some δ > 0,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae (Proceedings)
سال: 1965
ISSN: 1385-7258
DOI: 10.1016/s1385-7258(65)50055-x